

Exercise 1.

We apply the change of variable by using the parameterization of the curve:

$$\int_{\Gamma} F \cdot dl = \int_{[0,1]} F(\gamma(t)) \cdot \gamma'(t) dt,$$

where:

$$\begin{aligned}\gamma'(t) &= (1, 6t^2, 9t^8), \\ F(\gamma(t)) &= (6t^3 + \cos(t + t^{18}), 3t + 2t^3 + t^9 - 1, 2t^3 + 2t^9 \cos(t + t^{18})).\end{aligned}$$

Thus:

$$F(\gamma(t)) \cdot \gamma'(t) = (1 + 18t^{17}) \cos(t + t^{18}) - 6t^2 + 24t^3 + 12t^5 + 24t^{11}.$$

Finally, the integral is equal to:

$$\int_{\Gamma} F \cdot dl = \sin 2 + 8.$$

Exercise 2.

Let us check the possible answer one-by-one in order to identify the correct one.

- Divergence. False.

$$\begin{aligned}\frac{\partial F_x}{\partial x} &= \frac{d}{dx} \left(g(\sqrt{x^2 + y^2 + z^2}) x \right) \\ &= \frac{x^2}{|(x, y, z)|} g'(|(x, y, z)|) + g(|(x, y, z)|), \\ \frac{\partial F_y}{\partial y} &= \frac{y^2}{|(x, y, z)|} g'(|(x, y, z)|) + g(|(x, y, z)|), \\ \frac{\partial F_z}{\partial z} &= \frac{z^2}{|(x, y, z)|} g'(|(x, y, z)|) + g(|(x, y, z)|).\end{aligned}$$

Thus:

$$\operatorname{div} F(x, y, z) = |(x, y, z)| g'(|(x, y, z)|) + 3g(|(x, y, z)|),$$

which is not equal to 0 in general (simple counter example: $g := 1$).

- Integral. False.

$$\int_{\Gamma} F \cdot dl = \int_{[0,1]} F(\gamma(t)) \cdot \gamma'(t) dt.$$

Additionally, we have:

$$\begin{aligned} F(\gamma(t)) &= (g(|\gamma(t)|) \cos 2\pi t, g(|\gamma(t)|) \sin 2\pi t, 0) \in \mathbb{R}^3 \\ &= (g(1) \cos 2\pi t, g(1) \sin 2\pi t, 0). \end{aligned}$$

We can consider the case where $g(1) = 0$. In this case, we would have:

$$\int_{\Gamma} F \cdot dl = 0 \neq 1.$$

- Potential. True.

We can view the scalar field $G : \mathbb{R}^3 \rightarrow \mathbb{R}$, as $G(x, y, z) = h(|x, y, z|)$, where function $h : \mathbb{R} \rightarrow \mathbb{R}$ is defined by:

$$h(a) = \int_{-3}^a t g(t) dt.$$

Interestingly, we have: $h'(a) = a g(a)$.

Let us compute the gradient of G :

$$\begin{aligned} \frac{\partial G}{\partial x}(x, y, z) &= \frac{x}{|x, y, z|} h'(|x, y, z|) = x g(|x, y, z|), \\ \frac{\partial G}{\partial y}(x, y, z) &= y g(|x, y, z|), \\ \frac{\partial G}{\partial z}(x, y, z) &= z g(|x, y, z|), \end{aligned}$$

and thus:

$$\text{grad } G(x, y, z) = g(|x, y, z|)(x, y, z) = F(x, y, z).$$

This answer is correct.

Exercise 3.

We apply the Divergence theorem:

$$\int_{\partial\Omega} F \cdot \nu ds = \int_{\Omega} \text{div } F d\Omega.$$

Here, the divergence applied to the defined vector field is:

$$\text{div } F(x, y, z) = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z} = 0 + 0 + 0 = 0.$$

Thus:

$$\int_{\partial\Omega} F \cdot \nu ds = 0.$$

Exercise 4.

Function f is continuous over \mathbb{R} and is even. As a result, we have $Ff = f$, and the only wrong statement is “ Ff consists uniquely en fonctions de sinus”.

Exercise 5.

Function f looks very similar to a Fourier series. Let us manipulate its expression:

$$\begin{aligned}
 f(x) &= \sum_{n=-\infty}^{+\infty} \frac{1}{3^{|n|}} \cos(2\pi nx) \\
 &= \sum_{n=-\infty}^{-1} \frac{1}{3^{|n|}} \cos(2\pi nx) + \cos(2\pi 0x) + \sum_{n=1}^{+\infty} \frac{1}{3^{|n|}} \cos(2\pi nx) \\
 &= \sum_{n=1}^{\infty} \frac{1}{3^{|-n|}} \cos(2\pi(-n)x) + 1 + \sum_{n=1}^{+\infty} \frac{1}{3^n} \cos(2\pi nx) \\
 &= 1 + \sum_{n=1}^{+\infty} \frac{2}{3^n} \cos(2\pi nx).
 \end{aligned}$$

It is now possible to identify the real Fourier coefficients directly:

$$a_0 = 1, \quad a_n = \frac{2}{3^n}, \quad b_n = 0.$$

By applying Parseval's identity, we get:

$$\begin{aligned}
 \int_{[0,1]} f^2(x) dx &= a_0^2 + \frac{1}{2} \sum_{n=1}^{+\infty} (a_n^2 + b_n^2) \\
 &= 1 + \frac{1}{2} \sum_{n=1}^{+\infty} \left(\frac{2}{3^n} \right)^2 \\
 &= 1 + 2 \sum_{n=1}^{+\infty} \left(\frac{1}{9} \right)^n.
 \end{aligned}$$

We can now identify the limit of a geometric series which converges:

$$\sum_{n=0}^{+\infty} \left(\frac{1}{9} \right)^n = \frac{1}{1 - 1/9} = \frac{9}{8},$$

and therefore:

$$\int_{[0,1]} f^2(x) dx = 1 + 2(9/8 - 1) = \frac{5}{4}.$$

Exercise 6.

A simple change of variable ($x = 3y$) leads to:

$$\int_{-\infty}^{+\infty} \frac{1}{1+9y^2} dy = \int_{-\infty}^{+\infty} \frac{1}{1+x^2} \frac{1}{3} dx = \frac{1}{3} \int_{-\infty}^{+\infty} \frac{1}{1+x^2} dx = \frac{1}{3} \int_{-\infty}^{+\infty} f(x) dx.$$

Let us recall the expression of the Fourier transforms:

$$\hat{f}(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(t) e^{-i\xi t} dt,$$

which leads to:

$$\int_{-\infty}^{+\infty} f(x) dx = \sqrt{2\pi} \hat{f}(\xi = 0) = \sqrt{2\pi} \sqrt{\frac{\pi}{2}} e^{-|0|} = \pi.$$

Therefore:

$$\int_{-\infty}^{+\infty} \frac{1}{1+9y^2} dy = \frac{\pi}{3}.$$

Exercise 7.

We have:

$$\mathcal{F}(g' * f)(\alpha) = \sqrt{2\pi} \mathcal{F}(g')(\alpha) \mathcal{F}(f)(\alpha) = \sqrt{2\pi} (i\alpha) \mathcal{F}(g)(\alpha) \mathcal{F}(f)(\alpha).$$

As a result: $\mathcal{F}(g' * f)(0) = 0$.

Exercise 8.

Applying Fourier transform to the equation gives:

$$-(i\alpha)^2 \hat{v}(\alpha) + \lambda \hat{v}(\alpha) = \sqrt{2\pi} \hat{w}(\alpha) \hat{v}(\alpha).$$

Let us consider the different possible answer:

- $\hat{w}(0) = \frac{\lambda}{\sqrt{2\pi}}$. False.

At $\alpha = 0$ we get:

$$\lambda \hat{v}(0) = \sqrt{2\pi} \hat{w}(0) \hat{v}(0) \rightarrow \hat{v}(0) (\sqrt{2\pi} \hat{w}(0) - \lambda) = 0.$$

Thus, $\hat{v}(0) = 0$ and/or $\hat{w}(0) = \lambda/\sqrt{2\pi}$. Because the second equation is verified here, the first one is not mandatory.

- $\hat{w}(0) = \frac{1}{\sqrt{2\pi}}$. False.

We reuse the previous result. In the particular case $\lambda = 1$, there is no need for $\hat{v}(0) = 0$.

- $\hat{w}(\sqrt{2\pi}) = \sqrt{2\pi}$. False.

At $\alpha = \sqrt{2\pi}$ we get:

$$2\pi\hat{v}(\sqrt{2\pi}) + \lambda\hat{v}(\sqrt{2\pi}) = \sqrt{2\pi}\hat{w}(\sqrt{2\pi})\hat{v}(\sqrt{2\pi}) \rightarrow \lambda\hat{v}(\sqrt{2\pi}) = 0.$$

In the particular case $\lambda = 0$, there is no need for $\hat{v}(\sqrt{2\pi}) = 0$.

- $\hat{w}(2\pi) = \sqrt{2\pi}$. True.

At $\alpha = 2\pi$ we get:

$$4\pi^2\hat{v}(2\pi) + \lambda\hat{v}(2\pi) = \sqrt{2\pi}\hat{w}(2\pi)\hat{v}(2\pi) \rightarrow \hat{v}(2\pi)(4\pi^2 - 2\pi + \lambda) = 0.$$

Since $\lambda > 0$, we cannot have $\lambda = 2\pi - 4\pi^2$. Therefore we need $\hat{v}(2\pi) = 0$.